Pololu 9V Step-Up Voltage Regulator U3V12F9

Pololu 9V Step-Up Voltage Regulator U3V12F9 Australia
Pololu 9V Step-Up Voltage Regulator U3V12F9 Australia Pololu 9V Step-Up Voltage Regulator U3V12F9 Australia Pololu 9V Step-Up Voltage Regulator U3V12F9 Australia Pololu 9V Step-Up Voltage Regulator U3V12F9 Australia Pololu 9V Step-Up Voltage Regulator U3V12F9 Australia Pololu 9V Step-Up Voltage Regulator U3V12F9 Australia Pololu 9V Step-Up Voltage Regulator U3V12F9 Australia Pololu 9V Step-Up Voltage Regulator U3V12F9 Australia Pololu 9V Step-Up Voltage Regulator U3V12F9 Australia
Product ID: PL-2116

$5.53

We have 1 units of the Pololu 9V Step-Up Voltage Regulator U3V12F9 in stock at our Sydney warehouse.

If ordered before 2pm, this part would be delivered on or before Tuesday, Jan 22 to most parts of Australia.

We can get a further 391 units from Pololu Australia.
If you order today we can dispatch this stock between Monday, Jan 21 and Thursday, Jan 24 2019.

Description
Updated about 2 months ago
Data Sheets & Documents
Updated 10 months ago
Collections
Updated about 2 months ago
Pololu's Description of the Pololu 9V Step-Up Voltage Regulator U3V12F9

Description

Overview

These boost (step-up) voltage regulators generate higher output voltages from input voltages as low as 2.5 V. They are switching regulators (also called switched-mode power supplies (SMPS) or DC-to-DC converters) and have a typical efficiency between 80% to 90%. The available output current is a function of the input voltage, output voltage, and efficiency (see Typical Efficiency and Output Current section below), but the input current can typically be as high as 1.4 A. This regulator is available with a fixed 5 V, 9 V, or 12 V output:

The regulator’s thermal shutdown prevents damage from overheating, but it does not have short-circuit or reverse-voltage protection.

Features
  • input voltage: 2.5 V – VOUT
  • fixed 5 V, 9 V, or 12 V output with 4% accuracy
  • 1.4 A switch allows for input currents up to 1.4 A
  • 2 mA typical no-load quiescent current
  • integrated over-temperature shutoff
  • small size: 0.515″ × 0.32″ × 0.1″ (13 × 8 × 3 mm)
Using the Regulator

Connections

The boost regulator has three connections: input voltage (VIN), ground (GND), and output voltage (VOUT).

The input voltage, VIN, must be at least 2.5 V and should not exceed the output voltage, VOUT. Please be wary of destructive LC spikes that might cause the input voltage to exceed VOUT (see below for more information).

The three connections are labeled on the back side of the PCB, and they are arranged with a 0.1″ spacing along the edge of the board for compatibility with solderless breadboards, connectors, and other prototyping arrangements that use a 0.1″ grid. You can solder wires directly to the board or solder in either the 3×1 straight male header strip or the 3×1 right-angle male header strip that is included.

Typical Efficiency and Output Current

The efficiency of a voltage regulator, defined as (Power out)/(Power in), is an important measure of its performance, especially when battery life or heat are concerns. As shown in the graphs below, this switching regulator typically has an efficiency of 80 to 90%.

LC Voltage Spikes

When connecting voltage to electronic circuits, the initial rush of current can cause damaging voltage spikes that are much higher than the input voltage. In our tests with typical power leads (~30″ test clips), input voltages above 10 V caused voltage spikes in excess of 20 V. You can suppress such spikes by soldering a 33μF or larger electrolytic capacitor close to the regulator between VIN and GND.

More information about LC spikes can be found in our application note, Understanding Destructive LC Voltage Spikes.

Pololu 9V Step-Up Voltage Regulator U3V12F9 is listed in: